Performance Evaluation of Different Types of Cutting Fluid in the Machining of Aisi 01 Hardened Steel Using Pulsed Jet Minimal Quantity Lubrication System
نویسندگان
چکیده
This paper presents the performance evaluation of three different cutting fluids used in a minimal quantity lubrication (MQL) system. The MQL system, developed in-house at the University of Malaya, was capable of delivering high velocity cutting fluid in narrow pulsed jet forms at a rate of 2 ml/min and a pressure of 20 MPa. The three cutting fluids chosen were neat oil, soluble oil and semi-synthetic cutting fluids. The experiments were designed to evaluate the performance of the fluids at various cutting velocities of 20,40 and 60 m/min and feed rates of 0.05,0.06 and 0.07 mm/tooth. The results were measured in terms of the average surface roughness of the machined workpiece, the cutting forces and the maximum flank wear. In addition, the resultant chip formations were also observed. Analysis of the results has shown that in general, neat oil had performed the best in low cutting velocities and feed rates. On the other hand, soluble oil gave the lowest cutting forces and flank wears at high cutting velocities and feed rated as compared to neat oil and synthetic cutting fluid. It was observed that performance of soluble oil does not drastically change with variation to the cutting velocities and feed rates. Thus, the choice of soluble oil would be most appropriate for general machining usage. With suitable machining parameter selection, water-mixed cutting fluids (soluble oil and semisynthetics) performed comparatively well to deliver low surface roughness results. Therefore, this can be an economical choice for use in industrial production processes.
منابع مشابه
Analysis of effect of Minimum Quantity Lubrication on different machining parameters Cutting Force, Surface Roughness and Tool Wear by Hard Turning of AISI-4340 Alloy Steel a Review
This paper deals with the study of various machining process and show the effect of different cutting parameters on the properties of material. There are several important factors in the product quality which are surface finish, cutting temperature, tool life and coolant quality. The use of coolant generally causes life of tools and it also maintains work piece surface properties without damage...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملExperimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted
Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...
متن کاملExperimental Study of the Cutting Parameters Effect on Hole Making Processes in Hardened Steel
Hardened steels are commonly used in wide areas of technologies and industries. In respect of poor machinability of these steels and requirement of expensive cutting tools, study of machining economy is a matter of importance. Thus the present study deals with the economic considerations of various hole making processes. For this purpose, the hard steel samples were machined by conventional dri...
متن کاملTowards sustainable machining of 17-4 PH stainless steel using hybrid MQL-hot turning process
The use of a minimum quantity of lubrication (MQL) with extremely low consumption of lubricant in machining processes has been reported as a technologically and environmentally feasible alternative to conventional flood cooling. In hot machining, the external heat source is applied during machining that will assist to increase machining performance. Many external heating techniques are availabl...
متن کامل